Background
Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B (NF-κB) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated.
Conclusion
This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.
Methods
Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for NF-кB, immunofluorescence imaging for the subcellular localization of Annexin A2 and NF-кB p50 subunit, coimmunoprecipitation of Annexin A2 and NF-кB p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability.
Results
Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and NF-кB p50 subunit and their nuclear colocalization, which attenuated the activation of NF-кB and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2.
