Eosinophil persistence in vivo and sustained viability ex vivo in response to respiratory challenge with fungal allergens

嗜酸性粒细胞在真菌过敏原引起的呼吸道刺激下,在体内持久存在,并在体外持续存活

阅读:7
作者:W E Geslewitz, C M Percopo, H F Rosenberg

Background

Eosinophils are immunomodulatory leucocytes that contribute to the pathogenesis of Th2-driven asthma and allergic lung diseases.

Methods

Mice were challenged intranasally on days 0, 3 and 6 with a filtrate of Alternaria alternata. Recruited eosinophils were enumerated in bronchoalveolar lavage fluid. Eosinophils were also isolated from lungs of mice sensitized and challenged with Aspergillus fumigatus and evaluated ex vivo in tissue culture.

Objective

Our goal was to identify unique properties of eosinophils recruited to the lungs and airways of mice in response to challenge with asthma-associated fungal allergens.

Results

Eosinophils persist in the airways for several weeks in response to brief provocation with A. alternata in wild-type, Gm-csf- and eotaxin-1-gene-deleted mice, while eosinophils are recruited but do not persist in the absence of IL-13. Eosinophils isolated from the lungs A. alternata-challenged mice are cytokine-enriched compared to those from IL5tg mice, including 800-fold higher levels of eotaxin-1. Furthermore, eosinophils from the lungs and spleen of fungal allergen-challenged wild-type mice are capable of prolonged survival ex vivo, in contrast to eosinophils from both untreated and fungal allergen-challenged IL5tg mice, which undergo rapid demise in the absence of exogenous cytokine support. TNF-α (but not IL5, IL-3, eotaxin-1 or GM-CSF) was detected in supernatants of ex vivo eosinophil cultures from the lungs of fungal allergen-challenged wild-type mice. However, neither TNF-α gene deletion nor anti-TNF-α neutralizing antibodies had any impact sustained eosinophil survival ex vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。