Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism

牛磺酸治疗可防止经典同型胱氨酸尿症小鼠模型中肝脏 γ-谷氨酰循环和甲基乙二醛代谢紊乱:硫醇和亚磺酸代谢之间的调节串扰

阅读:10
作者:Kenneth N Maclean, Hua Jiang, Stefanos Aivazidis, Eugene Kim, Colin T Shearn, Peter S Harris, Dennis R Petersen, Robert H Allen, Sally P Stabler, James R Roede

Abstract

Cystathionine β-synthase-deficient homocystinuria (HCU) is a poorly understood, life-threatening inborn error of sulfur metabolism. Analysis of hepatic glutathione (GSH) metabolism in a mouse model of HCU demonstrated significant depletion of cysteine, GSH, and GSH disulfide independent of the block in trans-sulfuration compared with wild-type controls. HCU induced the expression of the catalytic and regulatory subunits of γ-glutamyl ligase, GSH synthase (GS), γ-glutamyl transpeptidase 1, 5-oxoprolinase (OPLAH), and the GSH-dependent methylglyoxal detoxification enzyme, glyoxalase-1. Multiple components of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant-response regulatory axis were induced without any detectable activation of Nrf2. Metabolomic analysis revealed the accumulation of multiple γ-glutamyl amino acids and that plasma ophthalmate levels could serve as a noninvasive marker for hepatic redox stress. Neither cysteine, nor betaine treatment was able to reverse the observed enzyme inductions. Taurine treatment normalized the expression levels of γ-glutamyl ligase C/M, GS, OPLAH, and glyoxalase-1, and reversed HCU-induced deficits in protein glutathionylation by acting to double GSH levels relative to controls. Collectively, our data indicate that the perturbation of the γ-glutamyl cycle could contribute to multiple sequelae in HCU and that taurine has significant therapeutic potential for both HCU and other diseases for which GSH depletion is a critical pathogenic factor.-Maclean, K. N., Jiang, H., Aivazidis, S., Kim, E., Shearn, C. T., Harris, P. S., Petersen, D. R., Allen, R. H., Stabler, S. P., Roede, J. R. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。