Downregulation of the Expression of Steroidogenic Acute Regulatory Protein and Aromatase in Steroidogenic KGN Human Granulosa Cells after Exposure to Bisphenol A

双酚 A 暴露后类固醇生成急性调节蛋白和芳香化酶在类固醇生成 KGN 人颗粒细胞中的表达下调

阅读:7
作者:Ji-Eun Park, Seung Gee Lee, Seung-Jin Lee, Wook-Joon Yu, Jong-Min Kim

Abstract

Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 μM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。