Nanoencapsulated Quercetin Improves Cardioprotection during Hypoxia-Reoxygenation Injury through Preservation of Mitochondrial Function

纳米封装槲皮素通过保护线粒体功能改善缺氧复氧损伤期间的心脏保护作用

阅读:11
作者:Omar Lozano, Anay Lázaro-Alfaro, Christian Silva-Platas, Yuriana Oropeza-Almazán, Alejandro Torres-Quintanilla, Judith Bernal-Ramírez, Hugo Alves-Figueiredo, Gerardo García-Rivas

Abstract

The effective delivery of antioxidants to the cells is hindered by their high metabolization rate. In this work, quercetin was encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. They were characterized in terms of its physicochemical properties (particle size distribution, ζ-potential, encapsulation efficiency, quercetin release and biological interactions with cardiac cells regarding nanoparticle association, and internalization and protective capability against relevant challenges). A better delivery of quercetin was achieved when encapsulated versus free. When the cells were challenged with antimycin A, it resulted in lower mitochondrial O2 - (4.65- vs. 5.69- fold) and H2O2 rate production (1.15- vs. 1.73- fold). Similarly, under hypoxia-reoxygenation injury, a better maintenance of cell viability was found (77 vs. 65%), as well as a reduction of thiol groups (~70 vs. 40%). Therefore, the delivery of encapsulated quercetin resulted in the preservation of mitochondrial function and ATP synthesis due to its improved oxidative stress suppression. The results point to the potential of this strategy for the treatment of oxidative stress-based cardiac diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。