Circulating Progenitor Cells Correlate with Memory, Posterior Cortical Thickness, and Hippocampal Perfusion

循环祖细胞与记忆、后皮质厚度和海马灌注相关

阅读:5
作者:Daniel A Nation, Alick Tan, Shubir Dutt, Elissa C McIntosh, Belinda Yew, Jean K Ho, Anna E Blanken, Jung Yun Jang, Kathleen E Rodgers, Aimée Gaubert

Background

Bone marrow-derived progenitor cells survey the vasculature and home to sites of tissue injury where they can promote repair and regeneration. It has been hypothesized that these cells may play a protective role neurodegenerative and vascular cognitive impairment.

Conclusions

Circulating progenitor cells are associated with cognitive impairment, memory, cortical atrophy, and hippocampal perfusion. We hypothesize that progenitor depletion contributes to, or is triggered by, cognitive decline and cortical atrophy. Further study of progenitor cell depletion in older adults may benefit efforts to prevent or delay dementia.

Objective

To evaluate progenitor cell levels in older adults with and without mild cognitive impairment (MCI), and to relate circulating levels to memory, brain volume, white matter lesion volume, and cerebral perfusion. Method: Thirty-two older adults, free of stroke and cardiovascular disease, were recruited from the community and evaluated for diagnosis of MCI versus cognitively normal (CN). Participants underwent brain MRI and blood samples were taken to quantify progenitor reserve using flow cytometry (CD34+, CD34+CD133+, and CD34+CD133+CD309+ cells).

Results

Participants with MCI (n = 10) exhibited depletion of all CPC markers relative to those who were CN (n = 22), after controlling for age, sex, and education. Post-hoc age, sex, and education matched comparisons (n = 10 MCI, n = 10 CN) also revealed the same pattern of results. Depletion of CD34+ cells correlated with memory performance, left posterior cortical thickness, and bilateral hippocampal perfusion. Participants exhibited low levels of vascular risk and white matter lesion burden that did not correlate with progenitor levels. Conclusions: Circulating progenitor cells are associated with cognitive impairment, memory, cortical atrophy, and hippocampal perfusion. We hypothesize that progenitor depletion contributes to, or is triggered by, cognitive decline and cortical atrophy. Further study of progenitor cell depletion in older adults may benefit efforts to prevent or delay dementia.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。