A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways

聚多巴胺辅助锶取代磷灰石涂层钛通过 FAK/MAPK 和 PI3K/AKT 信号通路促进成骨和血管生成

阅读:7
作者:Yiting Sun, Yaxin Li, Yu Zhang, Tiange Wang, Kaili Lin, Jiaqiang Liu

Abstract

Early osteointegration is essential for biomedical implants. Surface modifications can significantly compensate for an implant's lack of biocompatibility and osteo-differentiation. They can also be designed to promote angiogenesis in order to assist osteogenesis and ultimately facilitate bone regeneration. In this study, a polydopamine-assisted strontium-substituted apatite coating (Ti@PDA + SrHA) was fabricated on a multifunctional titanium implant to induce both angiogenic and osteogenic abilities for rapid osseointegration. Polydopamine and Sr-substituted hydroxyapatite were coated on the implant through biomineralization. The in vitro results showed that Ti@PDA + SrHA improved cell adhesion and increased the proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs). Ti@PDA + SrHA upregulated the expression of ALP activity and osteogenic genes in rBMSCs and elevated angiogenic genes in both rBMSCs and HUVECs. Mechanically, the FAK/MAPK signaling pathway was activated in rBMSCs, and the PI3K/AKT signaling pathway was activated in both rBMSCs and HUVECs. Consistent with these findings, Ti@PDA + SrHA accelerated new bone formation and rapid osseointegration in the femoral condyle implantation study with good stability. Overall, we fabricated a multifunctional biocompatible implant with better angiogenic and osteogenic performance compared to the non-coated implant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。