Distinct chikungunya virus polymerase palm subdomains contribute to virus replication and virion assembly

不同的基孔肯雅病毒聚合酶棕榈亚结构域有助于病毒复制和病毒体组装

阅读:5
作者:Marie-France Martin, Boris Bonaventure, Nia E McCray, Olve B Peersen, Kathryn Rozen-Gagnon, Kenneth A Stapleford

Abstract

Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus (CHIKV) has established the importance of the nsP4 residue cysteine 483 in maintaining viral genetic fidelity. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the Coxsackievirus B3 3 polymerase. We rescued each variant in both mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to polymerase host-specific replication and genetic stability. Surprisingly, in mosquito cells, these variants in the ring finger and palm domain were replication competent and produced viral structural proteins, but they were unable to produce infectious progeny, indicating a yet uncharacterized role for the polymerase in viral assembly. Finally, we have identified additional residues in the nsP4 palm domain that influence the genetic diversity of the viral progeny, potentially via an alteration in NTP binding and/or discrimination by the polymerase. Taken together, these studies highlight that distinct nsP4 subdomains regulate multiple processes of the alphavirus life cycle, placing nsP4 in a central role during the switch from RNA synthesis to packaging and assembly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。