TMT-based proteomics analysis to screen potential biomarkers of acute-phase TBI in rats

基于TMT的蛋白质组学分析筛选大鼠急性期TBI的潜在生物标志物

阅读:6
作者:Haochen Wang, Jie Chen, Cheng Gao, Wei Chen, Guang Chen, Mingyang Zhang, Chengliang Luo, Tao Wang, Xiping Chen, Luyang Tao

Aims

Traumatic brain injury (TBI) is a common nervous system injury. However, the detailed mechanisms about functional dysregulation and dignostic biomarkers post-TBI are still unclear. So we aimed to identify potential differentially expressed proteins and genes in TBI for clinical diagnosis and therapeutic purposes. Main

Methods

Rat TBI model was established by the weight-drop method. First, through TMT-proteomics, we screened for the change in the proteins expression profile acute phase post-TBI. The DAVID and Reactome databases were used to analyze and visualize the dysregulation proteins. Then, using publicly available microarray datasets GSE45997, differentially expressed genes (DGEs) were identified for the 24 h post-TBI stage. Also, the proteomic data were compared with microarray data to analyze the similarity. Key findings: We found significant proteomics and transcriptomic changes in post-TBI samples. 989, 881, 832, 1057 proteins were quantitated at 1 h, 6 h, 24 h, and 3 d post-injury correspondingly. Concerning proteomics findings, oxygen transport, acute-phase response, and negative regulation of endopeptidase activity were influenced throughout the acute phrase of TBI. Also, pathways related to scavenging of heme from plasma, binding, and uptake of ligands by scavenger receptors were highly enriched in all time-points of TBI samples. Significance: We noticed that the interaction-networks trend to get complicated with more node connections following the progression of TBI. We inferred that Hk-1, PRKAR2A, and MBP could be novel candidate biomarkers related to time-injury in acute-phase TBI. Also, Ceruloplasmin and Complement C3 were found to be important proteins and genes are involved in the TBI.

Significance

We noticed that the interaction-networks trend to get complicated with more node connections following the progression of TBI. We inferred that Hk-1, PRKAR2A, and MBP could be novel candidate biomarkers related to time-injury in acute-phase TBI. Also, Ceruloplasmin and Complement C3 were found to be important proteins and genes are involved in the TBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。