Significance
The way to develop programmed released drug delivery system is commonly relied on complicated material design and synthesis. Herein, under the computer-assist design, we successfully designed a ternary complex derived from indomethacin (IND), paclitaxel (PTX) and a pH-responsive PEGylated polyethyleneimine (PEG-s-PEI), and employed this ternary complex to successfully prepare a high drug loading and multilayer structured nanomedicine of PTX (PTX IPCNs). Contribute by the different location of PTX, IND and PEG-s-PEI in PTX IPCNs, PEG fragments, IND and PTX molecules could programmed release after reaching tumor for perfectly realizing the synergistic anti-tumor effect of tumor targeting, reversal of MDR and chemotherapy. Based on a fusion of these multiple mechanisms, PTX IPCNs showed a superior antitumor efficacy in mice loading A549/MDR tumor.
Statement of significance
The way to develop programmed released drug delivery system is commonly relied on complicated material design and synthesis. Herein, under the computer-assist design, we successfully designed a ternary complex derived from indomethacin (IND), paclitaxel (PTX) and a pH-responsive PEGylated polyethyleneimine (PEG-s-PEI), and employed this ternary complex to successfully prepare a high drug loading and multilayer structured nanomedicine of PTX (PTX IPCNs). Contribute by the different location of PTX, IND and PEG-s-PEI in PTX IPCNs, PEG fragments, IND and PTX molecules could programmed release after reaching tumor for perfectly realizing the synergistic anti-tumor effect of tumor targeting, reversal of MDR and chemotherapy. Based on a fusion of these multiple mechanisms, PTX IPCNs showed a superior antitumor efficacy in mice loading A549/MDR tumor.
