Methods
Bone marrow or peripheral blood was obtained from newly diagnosed (n = 26), relapsed (n = 10), and completely remitted (n = 18) patients with AML (M3 exclusion) and healthy donors (n = 10). Small interfering RNA was used to stably silence HO-1 gene expression in AML cell lines. The expressions of HO-1, hypoxia inducible factor-1ɑ (HIF-1ɑ), glucose transporter-1 (GLUT1) mRNA and proteins were measured by quantitative real-time PCR and Western blot. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis induction was analyzed by flow cytometry.
Results
The drug-resistant AML cell line HL-60R was significantly less sensitive to cytarabine and daunorubicin than HL-60 cells. HO-1 mRNA and proteins were highly expressed in HL-60R cells. However, down-regulating HO-1 significantly enhanced the sensitivity of HL-60R to chemotherapy, and the expressions of HIF-1ɑ and GLUT1 mRNA and proteins decreased. Meanwhile, the expressions of caspase-3 and caspase-8 proteins increased, while that of bcl-2 decreased. Overexpressions of HO-1, HIF-1ɑ, and GLUT1 were associated with poor response of AML to chemotherapy. Conclusions Overexpressions of HO-1, HIF-1ɑ, and GLUT1 might be involved in the chemoresistance of AML. HO-1 is a potential target to overcome the drug resistance of AML.
