Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs

使用单基质细胞生物墨水结构对预定义形状的骨组织进行 3D 生物打印

阅读:6
作者:Yawei Gu, Sebastien Pigeot, Lucas Ahrens, Fabian Tribukait-Riemenschneider, Melika Sarem, Francine Wolf, Andres García-García, Andrea Barbero, Ivan Martin, V Prasad Shastri

Abstract

Engineering living bone tissue of defined shape on-demand has remained a challenge. 3D bioprinting (3DBP), a biofabrication process capable of yielding cell constructs of defined shape, when combined with developmental engineering can provide a possible path forward. Through the development of a bioink possessing appropriate rheological properties to carry a high cell load and concurrently yield physically stable structures, printing of stable, cell-laden, single-matrix constructs of anatomical shapes is realized without the need for fugitive or support phases. Using this bioink system, constructs of hypertrophic cartilage of predesigned geometry are engineered in vitro by printing human mesenchymal stromal cells at a high density to drive spontaneous condensation and implanted in nude mice to evoke endochondral ossification. The implanted constructs retain their prescribed shape over a 12-week period and undergo remodeling to yield ossicles of the designed shape with neovascularization. Microcomputed tomography, histological, and immunohistochemistry assessments confirm bone tissue characteristics and the presence of human cells. These results demonstrate the potential of 3DBP to fabricate complex bone tissue for clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。