Comparative Analysis of AGE and RAGE Levels in Human Somatic and Embryonic Stem Cells under H2O2-Induced Noncytotoxic Oxidative Stress Conditions

H2O2 诱导的非细胞毒性氧化应激条件下人类体细胞和胚胎干细胞中 AGE 和 RAGE 水平的比较分析

阅读:8
作者:Maria Barandalla, Elisa Haucke, Bernd Fischer, Alexander Navarrete Santos, Silvia Colleoni, Cesare Galli, Anne Navarrete Santos, Giovanna Lazzari

Abstract

The accumulation of advanced glycation end products (AGEs) occurs in ageing and in many degenerative diseases as a final outcome of persistent oxidative stress on cells and organs. Environmental alterations taking place during early embryonic development can also lead to oxidative damage, reactive oxygen species (ROS) production, and AGE accumulation. Whether similar mechanisms act on somatic and embryonic stem cells (ESC) exposed to oxidative stress is not known; and therefore, the modelling of oxidative stress in vitro on human ESC has been the focus of this study. We compared changes in N ε -carboxymethyl-lysine (CML) advanced glycation end products and RAGE levels in hESC versus differentiated somatic cells exposed to H2O2 within the noncytotoxic range. Our data revealed that hESC accumulates CML and RAGE under oxidative stress conditions in different ways than somatic cells, being the accumulation of CML statistically significant only in somatic cells and, conversely, the RAGE increase exclusively appreciated in hESC. Then, following cardiac and neural differentiation, we observed a progressive removal of AGEs and at the same time an elevated activity of the 20S proteasome. We conclude that human ESCs constitute a unique model to study the consequence of an oxidative environment in the pluripotent cells of the embryo during the human preimplantation period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。