Significance
The increasing number of people of advanced age within the population results in an increasing demand for the treatment of non-healing wounds. Hydrogels are promising biomaterials for the temporary closure of large tissue defects: They can adapt to complex tissue geometry and can be engineered for specific tissue needs. We used a starPEG-heparin hydrogel platform that can be independently adjusted to mechanical and biochemical characteristics. We investigated how these hydrogels can support attachment, proliferation and differentiation of dermal fibroblasts. After introducing adhesive peptides these hydrogels support cell attachment and proliferation. Moreover, TGFβ - an essential growth and differentiation factor for fibroblasts - can be immobilized reversibly and functionally on these hydrogels. Thus, starPEG-heparin hydrogels could be developed to bioactive temporary wound dressings.
Statement of significance
The increasing number of people of advanced age within the population results in an increasing demand for the treatment of non-healing wounds. Hydrogels are promising biomaterials for the temporary closure of large tissue defects: They can adapt to complex tissue geometry and can be engineered for specific tissue needs. We used a starPEG-heparin hydrogel platform that can be independently adjusted to mechanical and biochemical characteristics. We investigated how these hydrogels can support attachment, proliferation and differentiation of dermal fibroblasts. After introducing adhesive peptides these hydrogels support cell attachment and proliferation. Moreover, TGFβ - an essential growth and differentiation factor for fibroblasts - can be immobilized reversibly and functionally on these hydrogels. Thus, starPEG-heparin hydrogels could be developed to bioactive temporary wound dressings.
