TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation

TGFβ功能化星形PEG-肝素水凝胶调节人真皮成纤维细胞的生长和分化

阅读:5
作者:Akira Watarai, Lucas Schirmer, Stephan Thönes, Uwe Freudenberg, Carsten Werner, Jan C Simon, Ulf Anderegg

Significance

The increasing number of people of advanced age within the population results in an increasing demand for the treatment of non-healing wounds. Hydrogels are promising biomaterials for the temporary closure of large tissue defects: They can adapt to complex tissue geometry and can be engineered for specific tissue needs. We used a starPEG-heparin hydrogel platform that can be independently adjusted to mechanical and biochemical characteristics. We investigated how these hydrogels can support attachment, proliferation and differentiation of dermal fibroblasts. After introducing adhesive peptides these hydrogels support cell attachment and proliferation. Moreover, TGFβ - an essential growth and differentiation factor for fibroblasts - can be immobilized reversibly and functionally on these hydrogels. Thus, starPEG-heparin hydrogels could be developed to bioactive temporary wound dressings.

Statement of significance

The increasing number of people of advanced age within the population results in an increasing demand for the treatment of non-healing wounds. Hydrogels are promising biomaterials for the temporary closure of large tissue defects: They can adapt to complex tissue geometry and can be engineered for specific tissue needs. We used a starPEG-heparin hydrogel platform that can be independently adjusted to mechanical and biochemical characteristics. We investigated how these hydrogels can support attachment, proliferation and differentiation of dermal fibroblasts. After introducing adhesive peptides these hydrogels support cell attachment and proliferation. Moreover, TGFβ - an essential growth and differentiation factor for fibroblasts - can be immobilized reversibly and functionally on these hydrogels. Thus, starPEG-heparin hydrogels could be developed to bioactive temporary wound dressings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。