Conclusions
PCat inhibits osteoclast differentiation and promotes osteoblast differentiation, resulting in increased bone mass in mice. These results suggest that PCat administration is a promising treatment option for conditions associated with bone loss, including osteoporosis.
Methods
Six week old female mice were orally administered PCat (30 mg/kg) every other day for four weeks, and their femurs were analyzed using micro-computed tomography imaging. Osteoclasts and osteoblasts were collected from mice and cultured with PCat. Subsequently, osteoclast formation and differentiation and osteoblast differentiation were observed.
Results
Mice orally administered PCat displayed significantly increased femur bone mass compared to the control group. Quantitative polymerase chain reaction findings indicated that PCat addition to osteoclast progenitor cultures suppressed osteoclast formation and decreased osteoclast marker expression without affecting the proliferative potential of the osteoclast progenitor cells. Addition of PCat to osteoblast cultures increased osteoblast marker expression. Conclusions: PCat inhibits osteoclast differentiation and promotes osteoblast differentiation, resulting in increased bone mass in mice. These results suggest that PCat administration is a promising treatment option for conditions associated with bone loss, including osteoporosis.
