A Noninvasive Multianalytical Approach for Lung Cancer Diagnosis of Patients with Pulmonary Nodules

一种用于诊断肺结节患者肺癌的非侵入性多分析方法

阅读:6
作者:Quan-Xing Liu, Dong Zhou, Tian-Cheng Han, Xiao Lu, Bing Hou, Man-Yuan Li, Gui-Xue Yang, Qing-Yuan Li, Zhi-Hua Pei, Yuan-Yuan Hong, Ya-Xi Zhang, Wei-Zhi Chen, Hong Zheng, Ji He, Ji-Gang Dai

Abstract

Addressing the high false-positive rate of conventional low-dose computed tomography (LDCT) for lung cancer diagnosis, the efficacy of incorporating blood-based noninvasive testing for assisting practicing clinician's decision making in diagnosis of pulmonary nodules (PNs) is investigated. In this prospective observative study, next generation sequencing- (NGS-) based cell-free DNA (cfDNA) mutation profiling, NGS-based cfDNA methylation profiling, and blood-based protein cancer biomarker testing are performed for patients with PNs, who are diagnosed as high-risk patients through LDCT and subsequently undergo surgical resections, with tissue sections pathologically examined and classified. Using pathological classification as the gold standard, statistical and machine learning methods are used to select molecular markers associated with tissue's malignant classification based on a 98-patient discovery cohort (28 benign and 70 malignant), and to construct an integrative multianalytical model for tissue malignancy prediction. Predictive models based on individual testing platforms have shown varying levels of performance, while their final integrative model produces an area under the receiver operating characteristic curve (AUC) of 0.85. The model's performance is further confirmed on a 29-patient independent validation cohort (14 benign and 15 malignant, with power > 0.90), reproducing AUC of 0.86, which translates to an overall sensitivity of 80% and specificity of 85.7%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。