Salidroside Inhibits Lipopolysaccharide-ethanol-induced Activation of Proinflammatory Macrophages via Notch Signaling Pathway

红景天苷通过 Notch 信号通路抑制脂多糖乙醇诱导的促炎性巨噬细胞活化

阅读:5
作者:Jian-Sha Li, Lu-Yao Fan, Meng-Dan Yuan, Ming-You Xing

Abstract

Activation of macrophages is a key event for the pathogenesis of various inflammatory diseases. Notch signaling pathway recently has been found to be a critical pathway in the activation of proinflammatory macrophages. Salidroside (Sal), one of main bioactive components in Rhodiola crenulata (Hook. F. et Thoms) H. ohba, reportedly possesses anti-inflammatory activity and ameliorates inflammation in alcohol-induced hepatic injury. However, whether Sal regulates the activation of proinflammatory macrophages through Notch signaling pathway remains unknown. The present study investigated the effects of Sal on macrophage activation and its possible mechanisms by using both alcohol and lipopolysaccharide (LPS) to mimic the microenvironment of alcoholic liver. Detection of THP-1-derived macrophages exhibited that Sal could significantly decrease the expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and IL-6 in the macrophages at both mRNA and protein levels. Furthermore, Sal significantly suppressed NF-κB activation via Notch-Hes signaling pathway in a dose-dependent manner. Moreover, in the microenvironment of alcoholic liver, the expression of Notch-dependent pyruvate dehydrogenase phosphatase 1 (PDP1) was elevated, and that of M1 gene expression [inducible NO synthase (NOS2)] was up-regulated. These changes could all be effectively ameliorated by Sal. The aforementioned findings demonstrated that Sal could inhibit LPS-ethanol-induced activation of proinflammatory macrophages via Notch signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。