Deficiency of circadian clock gene Bmal1 exacerbates noncanonical inflammasome-mediated pyroptosis and lethality via Rev-erbα-C/EBPβ-SAA1 axis

昼夜节律基因 Bmal1 的缺乏会通过 Rev-erbα-C/EBPβ-SAA1 轴加剧非典型炎症小体介导的细胞焦亡和致死

阅读:7
作者:Do-Wan Shim, Jun-Cheol Eo, Saeyoung Kim, Inhwa Hwang, BoYoung Nam, Jae-Eun Shin, Seung Hyeok Han, Je-Wook Yu

Abstract

Circadian arrhythmia has been linked to increased susceptibility to multiple inflammatory diseases, such as sepsis. However, it remains unclear how disruption of the circadian clock modulates molecular aspects of innate immune responses, including inflammasome signaling. Here, we examined the potential role of the circadian clock in inflammasome-mediated responses through myeloid-specific deletion of BMAL1, a master circadian clock regulator. Intriguingly, Bmal1 deficiency significantly enhanced pyroptosis of macrophages and lethality of mice under noncanonical inflammasome-activating conditions but did not alter canonical inflammasome responses. Transcriptome analysis of enriched peritoneal myeloid cells revealed that Bmal1 deficiency led to a marked reduction in Rev-erbα expression at steady state and a significant increase in serum amyloid A1 (SAA1) expression upon poly(I:C) stimulation. Notably, we found that the circadian regulator Rev-erbα is critical for poly(I:C)- or interferon (IFN)-β-induced SAA1 production, resulting in the circadian oscillation pattern of SAA1 expression in myeloid cells. Furthermore, exogenously applied SAA1 markedly increased noncanonical inflammasome-mediated pyroptosis of macrophages and lethality of mice. Intriguingly, our results revealed that type 1 IFN receptor signaling is needed for poly(I:C)- or IFN-β-induced SAA1 production. Downstream of the type 1 IFN receptor, Rev-erbα inhibited the IFN-β-induced association of C/EBPβ with the promoter region of Saa1, leading to the reduced transcription of Saa1 in macrophages. Bmal1-deficient macrophages exhibited enhanced binding of C/EBPβ to Saa1. Consistently, the blockade of Rev-erbα by SR8278 significantly increased poly(I:C)-stimulated SAA1 transcription and noncanonical inflammasome-mediated lethality in mice. Collectively, our data demonstrate a potent suppressive effect of the circadian clock BMAL1 on the noncanonical inflammasome response via the Rev-erbα-C/EBPβ-SAA1 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。