Caspase-3-mediated GSDME activation contributes to cisplatin- and doxorubicin-induced secondary necrosis in mouse macrophages

Caspase-3 介导的 GSDME 激活导致顺铂和阿霉素诱导的小鼠巨噬细胞继发性坏死

阅读:5
作者:Feng-Yi Mai, Pengyan He, Jie-Zhou Ye, Li-Hui Xu, Dong-Yun Ouyang, Chen-Guang Li, Qiong-Zhen Zeng, Chen-Ying Zeng, Cheng-Cheng Zhang, Xian-Hui He, Bo Hu

Conclusion

Chemotherapeutic cisplatin and doxorubicin exerted their cytotoxicity on macrophages partly by inducing caspase-3/GSDME-mediated secondary necrosis.

Methods

RAW 264.7 cells and bone marrow-derived macrophages (BMDMs) were treated with cisplatin or doxorubicin. Propidium iodide staining was used to assay necrosis, and immunoblotting was performed to detect protein expression. GSDME was knocked down by using small interfering RNA. Mice were injected intraperitoneally to evaluate toxicity to macrophages in vivo. Flow cytometry and immunofluorescence microscopy were adopted to analyse phenotypes of peritoneal cells. Cytokine levels were assayed by cytometric bead array.

Objective

Induction of secondary necrosis/pyroptosis contributes to the toxicity of chemotherapeutic drugs, in which gasdermin E (GSDME) plays critical roles. This study aimed to explore whether GSDME is involved in mediating the cytotoxic effects of cisplatin and doxorubicin on mouse macrophages.

Results

Both cisplatin and doxorubicin dose-dependently induced necrosis in mouse RAW 264.7 macrophages and BMDMs. Accompanying this, multiple caspases were activated, concomitant with the cleavage of poly (ADP-ribose) polymerase. Consistent with caspase-3 activation, GSDME was cleaved to generate its N-terminal fragment (GSDME-NT), thus leading to secondary necrosis/pyroptosis. Inhibition of caspase-3 significantly attenuated the generation of GSDME-NT concurrently with decreased necrosis in macrophages. GSDME knockdown also evidently decreased the necrosis in RAW 264.7 and BMDMs. Besides, cisplatin administration depleted peritoneal macrophages in mice, which was associated with caspase-3 activation and GSDME-NT generation. Consistent with the macrophage depletion, cisplatin administration significantly decreased survival of mice with bacterial infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。