Characterization of a single reporter-gene potency assay for T-cell-dependent bispecific molecules

细胞依赖性双特异性分子的单个报告基因效力测定的表征

阅读:5
作者:Ho Young Lee, Ames Register, Jeongsup Shim, Edward Contreras, Qiang Wu, Guoying Jiang

Abstract

T-cell-dependent bispecific antibodies (TDBs) are promising cancer immunotherapies that recruit patients' T cells to kill cancer cells. There are many TDBs in clinical trials, demonstrating their widely recognized therapeutic potential. However, their complex, multi-step mechanism of action (MoA), which includes bispecific antigen binding, T-cell activation, and target-cell killing, presents unique challenges for biological characterization and potency assay selection. Here, we describe the development of a single reporter-gene potency assay for a TDB (TDB1) that is MoA reflective and sensitive to binding of both antigens. Our reporter-gene assay measures T-cell activation using Jurkat cells engineered to express luciferase under the control of an NFkB response element. The potencies of select samples were measured both by this assay and by a flow-cytometry-based cell-killing assay using human lymphocytes as effector cells. Correlating the two sets of potency results clearly establishes our reporter-gene assay as MoA reflective. Furthermore, correlating potencies for the same panel of samples against binding data measured by binding assays for each individual arm demonstrates that the reporter-gene potency assay reflects dual-antigen binding and can detect changes in affinity for either arm. This work demonstrates that one reporter-gene assay can be used to measure the potency of TDB1 while capturing key aspects of its MoA, thus serving as a useful case study of selection and justification of reporter-gene potency assays for TDBs. Furthermore, our strategy of correlating reporter-gene potency, target-cell killing, and antigen binding for each individual arm serves as a useful example of a thorough, holistic approach to biological characterization for TDBs that can be applied to other bispecific molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。