Docosahexaenoic Acid Attenuates Radiation-Induced Myocardial Fibrosis by Inhibiting the p38/ET-1 Pathway in Cardiomyocytes

二十二碳六烯酸通过抑制心肌细胞中的 p38/ET-1 通路减轻放射性心肌纤维化

阅读:5
作者:Yuchen Liu, Pengxiang Chen, Tianyu Liu, Bo Cheng, Changhua Sun, Huixian Xin, Zhihua Wen, Yufeng Cheng

Conclusions

Our findings demonstrate that radiation facilitates cardiac fibroblast activation by enhancing p38/ET-1 signaling in cardiomyocytes, revealing the IR/p38/ET-1 regulatory axis in RIMF for the first time. DHA effectively inhibits fibroblast activation by targeting p38/ET-1 and can be recognized as a promising protective agent against RIMF.

Purpose

Radiation-induced myocardial fibrosis (RIMF) is a severe delayed complication of thoracic irradiation (IR). Endothelin-1 (ET-1) is critical in cardiac fibroblast activation, and docosahexaenoic acid (DHA) is protective against various cardiac diseases. This study aimed to explore the roles of ET-1 in RIMF and the potential of DHA in preventing RIMF.

Results

Radiation increased ET-1 expression and secretion by increasing p38 phosphorylation in cardiomyocytes, and ET-1 markedly promoted the activation of cardiac fibroblasts, which were characterized by enhanced fibroblast proliferation, migration, and α-SMA expression. Cardiomyocyte-derived ET-1 mediated radiation-induced fibroblast activation by targeting the PI3K-AKT and MEK-ERK pathways in fibroblasts. DHA suppressed ET-1 levels by blocking p38 signaling in cardiomyocytes and significantly attenuated the activation of cardiac fibroblasts induced by the IR/ET-1 axis. Importantly, DHA decreased collagen deposition and α-SMA expression, alleviating cardiac fibrosis caused by radiation in mouse models. Conclusions: Our findings demonstrate that radiation facilitates cardiac fibroblast activation by enhancing p38/ET-1 signaling in cardiomyocytes, revealing the IR/p38/ET-1 regulatory axis in RIMF for the first time. DHA effectively inhibits fibroblast activation by targeting p38/ET-1 and can be recognized as a promising protective agent against RIMF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。