Base-Resolution Mapping Reveals Distinct m1A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts

碱基分辨率映射揭示核和线粒体编码转录本中不同的 m1A 甲基化组

阅读:4
作者:Xiaoyu Li, Xushen Xiong, Meiling Zhang, Kun Wang, Ying Chen, Jun Zhou, Yuanhui Mao, Jia Lv, Danyang Yi, Xiao-Wei Chen, Chu Wang, Shu-Bing Qian, Chengqi Yi

Abstract

Gene expression can be post-transcriptionally regulated via dynamic and reversible RNA modifications. N1-methyladenosine (m1A) is a recently identified mRNA modification; however, little is known about its precise location and biogenesis. Here, we develop a base-resolution m1A profiling method, based on m1A-induced misincorporation during reverse transcription, and report distinct classes of m1A methylome in the human transcriptome. m1A in 5' UTR, particularly those at the mRNA cap, associate with increased translation efficiency. A different, small subset of m1A exhibit a GUUCRA tRNA-like motif, are evenly distributed in the transcriptome, and are dependent on the methyltransferase TRMT6/61A. Additionally, we show that m1A is prevalent in the mitochondrial-encoded transcripts. Manipulation of m1A level via TRMT61B, a mitochondria-localizing m1A methyltransferase, demonstrates that m1A in mitochondrial mRNA interferes with translation. Collectively, our approaches reveal distinct classes of m1A methylome and provide a resource for functional studies of m1A-mediated epitranscriptomic regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。