Chaetomorpha linum polysaccharides alleviate NAFLD in mice by enhancing the PPARα/CPT-1/MCAD signaling

Chaetomorpha linum 多糖通过增强 PPARα/CPT-1/MCAD 信号传导缓解小鼠的 NAFLD

阅读:4
作者:Xueru Chu #, Yu Zhou #, Shuimi Zhang, Shousheng Liu, Guoyun Li, Yongning Xin

Background

Green algae contain many polysaccharides. However, there is no information on whether Chaetomorpha linum polysaccharides (CLP) can modulate lipid and glucose metabolism. Material and

Conclusions

These findings indicated that CLP treatment alleviated the gain in body weights, NAFLD, and glucose intolerance in mice after HFD feeding by enhancing the PPARα/CPT-1/MCAD signaling.

Material and methods

CLP were extracted from chlorella and their components were characterized. Male C57BL/6 mice were randomized and provided with control chow as the control, or high fat diet (HFD) to induce nonalcoholic fatty liver disease (NAFLD). NAFLD mice were treated orally with water as the HFD group or with 50 or 150 mg/kg CLP daily for 10 weeks. The impact of CLP treatment on lipid and glucose metabolism and the PPARα signaling was examined by histology, Western blotting and biochemistry.

Methods

CLP were extracted from chlorella and their components were characterized. Male C57BL/6 mice were randomized and provided with control chow as the control, or high fat diet (HFD) to induce nonalcoholic fatty liver disease (NAFLD). NAFLD mice were treated orally with water as the HFD group or with 50 or 150 mg/kg CLP daily for 10 weeks. The impact of CLP treatment on lipid and glucose metabolism and the PPARα signaling was examined by histology, Western blotting and biochemistry.

Results

CLP mainly contained arabinogalactan sulfate. Compared with the control, HFD feeding increased body weights, lipid droplet liver deposition and induced hyperlipidemia, liver functional impairment and glucose intolerance in mice. Treatment with CLP, particularly with a higher dose of CLP, limited the HFD-increased body weights and liver lipid droplet deposition, mitigated the HFD-induced hyperlipidemia and improved liver function and glucose tolerance in mice. Mechanistically, feeding with HFD dramatically decreased the expression of liver PPARα, CPT-1, and MCAD, but treatment with CLP enhanced their expression in a trend of dose-dependent in mice. Conclusions: These findings indicated that CLP treatment alleviated the gain in body weights, NAFLD, and glucose intolerance in mice after HFD feeding by enhancing the PPARα/CPT-1/MCAD signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。