Background
Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus. It's known that glucagon-like peptide-1 (GLP-1) and prolyl 4-hydroxylase subunit alpha-1 (P4HA1) have significant effect on cardiovascular function, but their interaction in cardiac fibroblasts (CFs) is still being unraveled.
Conclusions
Liraglutide may down-regulate P4HA1 expression at least partly though CD36-JNK-AP1 pathway, thereby reducing myocardial fibrosis. Therefore, our study provides novel insight into the molecular mechanism and function of liraglutide in HG-mediated CFs.
Results
The present study demonstrated that glucose promotes CFs proliferation and cardiac fibrosis. Using qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, wound healing and Transwell assays to explore the functions of liraglutide and P4HA1 in high-glucose (HG)-induced CFs, we proved that liraglutide as well as silencing of P4HA1 inhibited cell proliferation, migration and invasion, and promoted cell cycle arrest and apoptosis in HG-induced CFs. In addition, liraglutide downregulated P4HA1 expression, upregulated CD36 and P-JNK expression levels, and enhanced the DNA binding activity of AP-1 on P4HA1. Inhibition of CD36 or p--JNK promoted P4HA1 expression. Conclusions: Liraglutide may down-regulate P4HA1 expression at least partly though CD36-JNK-AP1 pathway, thereby reducing myocardial fibrosis. Therefore, our study provides novel insight into the molecular mechanism and function of liraglutide in HG-mediated CFs.
