A Polymeric Nanoparticle Formulation for Targeted mRNA Delivery to Fibroblasts

用于将 mRNA 靶向递送至成纤维细胞的聚合物纳米颗粒制剂

阅读:5
作者:Artur Filipe Rodrigues, Catarina Rebelo, Susana Simões, Cristiana Paulo, Sónia Pinho, Vítor Francisco, Lino Ferreira

Abstract

Messenger RNA (mRNA)-based therapies offer enhanced control over the production of therapeutic proteins for many diseases. Their clinical implementation warrants formulations capable of delivering them safely and effectively to target sites. Owing to their chemical versatility, polymeric nanoparticles can be designed by combinatorial synthesis of different ionizable, cationic, and aromatic moieties to modulate cell targeting, using inexpensive formulation steps. Herein, 152 formulations are evaluated by high-throughput screening using a reporter fibroblast model sensitive to functional delivery of mRNA encoding Cre recombinase. Using in vitro and in vivo models, a polymeric nanoformulation based on the combination of 3 specific monomers is identified to transfect fibroblasts much more effectively than other cell types populating the skin, with superior performance than lipid-based transfection agents in the delivery of Cas9 mRNA and guide RNA. This tropism can be explained by receptor-mediated endocytosis, involving CD26 and FAP, which are overexpressed in profibrotic fibroblasts. Structure-activity analysis reveals that efficient mRNA delivery required the combination of high buffering capacity and low mRNA binding affinity for rapid release upon endosomal escape. These results highlight the use of high-throughput screening to rapidly identify chemical features towards the design of highly efficient mRNA delivery systems targeting fibrotic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。