Mechanistic Targets of Diallyl Trisulfide in Human Breast Cancer Cells Identified by RNA-seq Analysis

通过 RNA 测序分析鉴定人类乳腺癌细胞中二烯丙基三硫酯的机制靶点

阅读:4
作者:Eun-Ryeong Hahm, Su-Hyeong Kim, Sivapar V Mathan, Rana P Singh, Shivendra V Singh

Abstract

Diallyl trisulfide (DATS), a metabolic by-product of processed garlic, is highly effective in inhibiting growth of human breast cancer cells in vitro and in vivo, but the underlying mechanisms are still not fully understood. In this study, we performed RNA-seq analyses using luminal-type (MCF-7) and basal-like (MDA-MB-231) human breast cancer cells to identify mechanistic targets of DATS. The Reactome Pathway Analysis revealed upregulation of genes associated with SLIT/ROBO tumor suppressor signaling following DATS treatment in both MCF-7 and MDA-MB-231 cells. However, the expression of SLIT2 and ROBO1 proteins or their downstream target C-X-C motif chemokine receptor 4 was not affected by DATS treatment in both cell lines. The Reactome as well as the Gene Ontology Pathways Analyses of the RNA-seq data from DATS-treated cells indicated downregulation of genes associated with G2/M phase cell cycle arrest in comparison with vehicle-treated control cells. Consistent with the RNA-seq data, DATS treatment caused a significant increase in the fraction of the G2/M population in both cell lines when compared to corresponding control cells. In addition, Ser10 phosphorylation of histone H3, a mitotic marker, was also increased significantly following DATS treatment in MCF-7 and MDA-MB-231 cells. These results indicate that while SLIT/ROBO signaling is not affected by DATS treatment, cell cycle arrest likely contributes to the antitumor effect of this phytochemical.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。