Chemically related 4,5-linked aminoglycoside antibiotics drive subunit rotation in opposite directions

化学相关的 4,5-连接氨基糖苷类抗生素驱动亚基以相反方向旋转

阅读:7
作者:Michael R Wasserman, Arto Pulk, Zhou Zhou, Roger B Altman, John C Zinder, Keith D Green, Sylvie Garneau-Tsodikova, Jamie H Doudna Cate, Scott C Blanchard

Abstract

Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin-paromomycin, ribostamycin and neamine-each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6'-polar group, drive subunit rotation in opposite directions. This suggests that their distinct actions hinge on the 6'-substituent and the drug's net positive charge. By solving the crystal structure of the paromomycin-ribosome complex, we observe specific contacts between the apical tip of H69 and the 6'-hydroxyl on paromomycin from within the drug's canonical h44-binding site. These results indicate that aminoglycoside actions must be framed in the context of bridge B2 and their regulation of subunit rotation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。