Actin and ERK1/2-CEBPβ signaling mediates phagocytosis-induced innate immune response of osteoprogenitor cells

肌动蛋白和 ERK1/2-CEBPβ 信号介导吞噬作用诱导的骨祖细胞先天免疫反应

阅读:4
作者:Heon Goo Lee, Hiroshi Minematsu, Kyung Ok Kim, Ayse B Celil Aydemir, Mike J Shin, Saqib A Nizami, Kook Jin Chung, Anny C Hsu, Christopher R Jacobs, Francis Youngin Lee

Abstract

Wear particles at the host bone-implant interface are a major challenge for successful bone implant arthoplasties. Current understanding of aseptic loosening consists of macrophage-mediated inflammatory responses and increasing osteoclastogenesis, which lead to an imbalance between bone formation and resorption. Despite its significant role in bone regeneration and implant osteointegration, the osteoprogenitor response to wear particles has been examined recent years. More specifically, the intracellular mechanism of osteoprogenitor mediated inflammation has not been fully elucidated. In this study, we examined the role of osteoprogenitors and the cellular mechanism by which metal wear particles elicit an inflammatory cascade. Through both in vivo and in vitro experiments, we have demonstrated that osteoprogenitor cells are capable of initiating inflammatory responses by phagocytosing wear particles, which lead to subsequent accumulation of macrophages and osteoclastogenesis, and the ERK_CEBP/β intracellular signaling is a key inflammatory pathway that links phagocytosis of wear particles to inflammatory gene expression in osteoprogenitors. AZD6244 treatment, a potent inhibitor of the ERK pathway, attenuated particle mediated inflammatory osteolysis both in vivo and in vitro. This study advances our understanding of the mechanisms of osteoprogenitor-mediated inflammation, and provides further evidence that the ERK_CEBP/β pathway may be a suitable therapeutic target in the treatment of inflammatory osteolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。