MicroRNA-144-3p protects against chemotherapy-induced apoptosis of ovarian granulosa cells and activation of primordial follicles by targeting MAP3K9

MicroRNA-144-3p 通过靶向 MAP3K9 防止化疗引起的卵巢颗粒细胞凋亡和原始卵泡激活

阅读:5
作者:Meng Liu, Bang Xiao, Yiqing Zhu, Meiting Chen, Jinfeng Huang, Haiyan Guo, Fang Wang

Abstract

Premature ovarian failure (POF) is defined by amenorrhea, ovarian atrophy, hypoestrogenism, elevated gonadotropin level, and infertility under the age of 40. POF is frequently induced by chemotherapeutic agents. However, the underlying mechanisms regarding chemotherapy-mediated damage to ovarian function are unclear. In this study, enhanced apoptosis of granulosa cells (GCs) and aberrant activation of primordial follicles were observed in a POF mouse model induced by cisplatin. We subsequently observed significant downregulation of miR-144-3p and upregulation of mitogen-activated protein kinase kinase kinase 9 (MAP3K9) in primary ovarian GCs from POF mice, as revealed by microarrays. Furthermore, MAP3K9 expression was higher in human ovarian granulosa cells (COV434) treated with cisplatin and was identified as a novel target of miR-144-3p. Functional analysis revealed that miR-144-3p attenuated cisplatin induced apoptosis of GCs via silencing MAP3K9 expression, which suppressed the activity of the downstream p38 mitogen activated protein kinase (MAPK) pathway. Meanwhile, miR-144-3p prevented premature primordial follicle depletion in cisplatin-induced POF mice through targeting Map3k9, which led to a decline in the phosphorylation and activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase b (AKT) pathway. Taken together, this study revealed the protective effects of miR-144-3p on ovarian function and shed light on the epigenetic regulatory mechanism in the development of POF, which might provide new biomarkers for the ovarian reserve.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。