The miR156b-GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean

miR156b-GmSPL9d 模块通过靶向大豆中的多个核心结瘤基因来调节结瘤

阅读:6
作者:Jinxia Yun, Zhengxi Sun, Qiong Jiang, Youning Wang, Can Wang, Yuanqing Luo, Fengrong Zhang, Xia Li

Abstract

Symbiotic nodulation is initiated in the roots of legumes in response to low nitrogen and rhizobial signal molecules and is dynamically regulated by a complex regulatory network that coordinates rhizobial infection and nodule organogenesis. It has been shown that the miR156-SPL module mediates nodulation in legumes; however, conclusive evidence of how this module exerts its function during nodulation remains elusive. Here, we report that the miR156b-GmSPL9d module regulates symbiotic nodulation by targeting multiple key regulatory genes in the nodulation signalling pathway of soybean. miR156 family members are differentially expressed during nodulation, and miR156b negatively regulates nodulation by mainly targeting soybean SQUAMOSA promoter-binding protein-like 9d (GmSPL9d), a positive regulator of soybean nodulation. GmSPL9d directly binds to the miR172c promoter and activates its expression, suggesting a conserved role of GmSPL9d. Furthermore, GmSPL9d was coexpressed with the soybean nodulation marker genes nodule inception a (GmNINa) and GmENOD40-1 during nodule formation and development. Intriguingly, GmSPL9d can bind to the promoters of GmNINa and GmENOD40-1 and regulate their expression. Our data demonstrate that the miR156b-GmSPL9d module acts as an upstream master regulator of soybean nodulation, which coordinates multiple marker genes involved in soybean nodulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。