Src family kinases activity is required for transmitting purinergic P2X7 receptor signaling in cortical spreading depression and neuroinflammation

Src 家族激酶活性是皮质扩散性抑制和神经炎症中传递嘌呤能 P2X7 受体信号所必需的

阅读:5
作者:Lingdi Nie, Dongqing Ma, John P Quinn, Minyan Wang

Background

Purinergic P2X7 receptor plays an important role in migraine pathophysiology. Yet precise molecular mechanism underlying P2X7R signaling in migraine remains unclear. This study explores the hypothesis that P2X7 receptor transmits signaling to Src family kinases (SFKs) during cortical spreading depression (CSD) and neuroinflammation after CSD.

Conclusion

This study reveals that SFKs activity transmits P2X7 receptor signaling to facilitate CSD propagation via glutamatergic pathway and promote neuroinflammation, which is of particular relevance to migraine.

Methods

CSD was recorded using electrophysiology in rats and intrinsic optical imaging in mouse brain slices. Cortical IL-1β and TNFα mRNA levels were detected using qPCR. Glutamate release from mouse brain slices was detected using glutamate assay.

Results

The data showed that deactivation of SFKs by systemic injection of PP2 reduced cortical susceptibility to CSD in rats and CSD-induced IL-1β and TNF-α gene expression in rat ipsilateral cortices. Consistently, in mouse brain slices, inhibition of SFKs activity by saracatinib and P2X7 receptor by A740003 similarly reduced cortical susceptibility to CSD. When the interaction of P2X7 receptor and SFKs was disrupted by TAT-P2X7, a marked reduction of cortical susceptibility to CSD, IL-1β gene expression and glutamate release after CSD induction were observed in mouse brain slices. The reduced cortical susceptibility to CSD by TAT-P2X7 was restored by NMDA, and disrupting the Fyn-NMDA interaction using TAT-Fyn (39-57) but not disrupting Src-NMDA receptor interaction using TAT-Src (40-49) reduced cortical susceptibility to CSD. Furthermore, activation of P2X7 receptor by BzATP restored the TAT-Fyn (39-57)-reduced cortical susceptibility to CSD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。