Increased endoplasmic reticulum stress in decidual tissue from pregnancies complicated by fetal growth restriction with and without pre-eclampsia

妊娠合并胎儿生长受限(伴或不伴先兆子痫)时,蜕膜组织内质网应激增加

阅读:1
作者:I A Lian ,M Løset, S B Mundal, M H Fenstad, M P Johnson, I P Eide, L Bjørge, K A Freed, E K Moses, R Austgulen

Abstract

Objectives: Endoplasmic reticulum (ER) stress has been implicated in both pre-eclampsia (PE) and fetal growth restriction (FGR), and is characterised by activation of three signalling branches: 1) PERK-pEIF2α, 2) ATF6 and 3) splicing of XBP1(U) into XBP1(S). To evaluate the contribution of ER stress in the pathogenesis of PE relative to FGR, we compared levels of ER stress markers in decidual tissue from pregnancies complicated by PE and/or FGR. Study design: Whole-genome transcriptional profiling was performed on decidual tissue from women with PE (n = 13), FGR (n = 9), PE+FGR (n = 24) and controls (n = 58), and used for pathway and targeted transcriptional analyses of ER stress markers. The expression and cellular localisation of ER stress markers was assesses by Western blot and immunofluorescence analyses. Results: Increased ER stress was observed in FGR and PE+FGR, including both the PERK-pEIF2α and ATF6 signalling branches, whereas ER stress was less evident in isolated PE. However, these cases demonstrated elevated levels of XBP1(U) protein. ATF6 and XBP1 immunoreactivity was detected in most (>80%) extravillous trophoblasts, decidual cells and macrophages. No difference in the proportion of immunopositive cells or staining pattern was observed between study groups. Conclusions: Increased PERK-pEIF2α and ATF6 signalling have been associated with decreased cellular proliferation and may contribute to the impaired placental growth characterising pregnancies with FGR and PE+FGR. XBP1(U) has been proposed as a negative regulator of ER stress, and increased levels in PE may reflect a protective mechanism against the detrimental effects of ER stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。