Mdm2-mediated ubiquitination of PKCβII is responsible for insulin-induced heterologous desensitization of dopamine D3 receptor

Mdm2 介导的 PKCβII 泛素化是胰岛素诱导的多巴胺 D3 受体异源脱敏的原因

阅读:5
作者:Xingyue Zeng, ChengYan Wu, Yongkai Cao, Huijun Li, Xiaohan Zhang

Abstract

The insulin and dopaminergic systems in the brain are associated with schizophrenia and Parkinson's disease with respect to etiology and treatment. The present study investigated the crosstalk between the insulin receptor (IR) and dopamine receptor and found that insulin stimulation selectively inhibits signaling of D3 R in a PKCβII-dependent manner. Upon insulin stimulation, E3 ligase enzyme Mdm2 moves out of the nucleus to ubiquitinate PKCβII. Subsequently, ubiquitinated PKCβII translocates to the cell membrane and interacts with D3 R in a phosphorylation-dependent manner at S229/257, resulting in the attenuation of D3 R signaling and initiating clathrin-mediated endocytosis and downregulation. Considering that both IR and D3 R are closely related to some neuropsychosis, this study could provide new molecular insight into the etiology of the disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。