Rosmarinic Acid Decreases the Malignancy of Pancreatic Cancer Through Inhibiting Gli1 Signaling

迷迭香酸通过抑制 Gli1 信号降低胰腺癌的恶性程度

阅读:6
作者:Xiang Zhou, Weiming Wang, Zhaofeng Li, Lin Chen, Chunmei Wen, Qingqing Ruan, Zheng Xu, Rongdiao Liu, Jinzhong Xu, Yongheng Bai, Jie Deng

Background

Rosmarinic acid (RA) has been shown to exert anti-tumor effects on various types of cancer. However, its roles in the treatment of pancreatic ductal adenocarcinoma (PDAC) and the underlying mechanisms remain elusive.

Conclusion

We provided evidence that RA restrained the nuclear translocation of Gli1 and facilitates Gli1 degradation via proteasome pathway, reducing the malignancy of PDAC cells. These findings implicated RA as a therapeutic agent for PDAC.

Methods

Cell counting kit 8 (CCK8) assay, colony formation assay, 5-Ethynyl-2'-deoxyuridine (EDU) incorporation assay, cell cycle analysis, and apoptosis assay were conducted to assess the inhibitory effect of RA on PDAC cell proliferation. Meanwhile, western blotting and RT-qPCR assay were performed to detect the target gene expression at protein and mRNA levels, respectively. Moreover, the in vivo anti-tumor activities of RA were assayed in an xenograft mouse model of PDAC.

Purpose

The present study aimed to investigate the therapeutic effects of RA on PDAC as well as the underlying mechanisms. Study design: Evaluation of the effects of RA on PDAC malignancy both in vitro and in vivo.

Results

RA dramatically down-regulated Gli1 and its downstream targets. Further studies showed that RA prevents the nuclear translocation of Gli1, while promoting the degradation of cytosolic Gli1 via the proteasome pathway. Moreover, we observed that RA induced G1/S cell cycle arrest and apoptosis in the PDAC cells through regulating the expression of P21, P27, CDK2, Cyclin E, Bax, and Bcl-2, it inhibited the PDAC cell migration and invasion via E-cadherin and MMP-9. Notably, Gli1 overexpression markedly reversed the above RA-induced effects on PDAC cells, whereas Gli1 knockdown enhanced the effects. Additionally, the in vivo assays demonstrated that RA suppresses the tumor growth of PDAC presumably by inhibiting Gli1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。