Adenine causes cell cycle arrest and autophagy of chronic myelogenous leukemia K562 cells via AMP-activated protein kinase signaling

腺嘌呤通过 AMP 活化蛋白激酶信号导致慢性粒细胞白血病 K562 细胞细胞周期停滞和自噬

阅读:7
作者:San-Yuan Chen, Chun-Hsiang Lin, Jiun-Tsai Lin, Yi-Fang Cheng, Han-Min Chen, Shao-Hsuan Kao

Abstract

AMP-activated protein kinase (AMPK) is known as a pivotal regulator of cellular metabolism. Mounting evidences have demonstrated that AMPK activation exerts tumor suppressive activity on leukemia cells. The present study reported that adenine, an AMPK activator, triggers cell cycle arrest and autophagy of human chronic myelogenous leukemia K562 cells consequently suppressing cell viability. The present findings revealed that adenine treatment (4.0-8.0 mM) significantly inhibited the viability of K562 cells to 69.3±2.5% (24 h) and 53.4±2.1% (48 h) of the control. Flow cytometric analysis revealed that there was a significant accumulation in G2/M phase, but not sub-G1 phase K562 cells following exposure to adenine. Additional investigation demonstrated that adenine treatments significantly increased the number of acidic vesicular organelles and the level of autophagosomal microtubule associated protein 1 light chain 3 α (LC3) marker. By contrast, cleavage of caspase-9, caspase-3 and poly-ADP-ribose polymerase was insignificantly affected in K562 cells following adenine treatment. In K562 cells, adenine was able to markedly promote the phosphorylation of AMPKα and suppress the phosphorylation of mammalian target of rapamycin (mTOR), a downstream target of AMPK. In addition, inhibiting AMPK phosphorylation using dorsomorphin restored mTOR phosphorylation, inhibited the accumulation of LC3 and significantly recovered the suppressed cell viability in response to adenine. Taken together, the present results demonstrated that adenine induced G2/M phase arrest and autophagic cell death, consequently suppressing the viability of K562 cells, which may attribute to the AMPK activation triggered by adenine. These findings provide evidence that adenine may be beneficial to chronic myelogenous leukemia therapy by suppressing excessive cell proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。