Cell-type specific circadian transcription factor BMAL1 roles in excitotoxic hippocampal lesions to enhance neurogenesis

细胞类型特异性昼夜节律转录因子 BMAL1 在兴奋毒性海马损伤中发挥作用以增强神经发生

阅读:5
作者:Xuebing Zhang, Suihong Huang, Jin Young Kim

Abstract

Circadian clocks, generating daily rhythms in biological processes, maintain homeostasis in physiology, so clock alterations are considered detrimental. Studies in brain pathology support this by reporting abnormal circadian phenotypes in patients, but restoring the abnormalities by light therapy shows no dramatic effects. Recent studies on glial clocks report the complex effects of altered clocks by showing their beneficial effects on brain repairs. However, how neuronal clocks respond to brain pathology is elusive. This study shows that neuronal BMAL1, a core of circadian clocks, reduces its expression levels in neurodegenerative excitotoxicity. In the dentate gyrus of excitotoxic hippocampal lesions, reduced BMAL1 in granule cells precedes apoptosis. This subsequently reduces BMAL1 levels in neighbor neural stem cells and progenitors in the subgranular zone, enhancing proliferation. This shows the various BMAL1 roles depending on cell types, and its alterations can benefit brain repair. Thus, cell-type-specific BMAL1 targeting is necessary to treat brain pathology.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。