Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis

糖酵解和谷氨酰胺代谢的代谢重编程是系统性硬化症发病机制中肌成纤维细胞转变的关键事件

阅读:6
作者:John Henderson, Laura Duffy, Richard Stratton, Dianne Ford, Steven O'Reilly

Abstract

Systemic Sclerosis (SSc) is a rare fibrotic autoimmune disorder for which no curative treatments currently exist. Metabolic remodelling has recently been implicated in other autoimmune diseases; however, its potential role in SSc has received little attention. Here, we aimed to determine whether changes to glycolysis and glutaminolysis are important features of skin fibrosis. TGF-β1, the quintessential pro-fibrotic stimulus, was used to activate fibrotic pathways in NHDFs in vitro. Dermal fibroblasts derived from lesions of SSc patients were also used for in vitro experiments. Parameters of glycolytic function were assessed using by measuring extracellular acidification in response to glycolytic activators/inhibitors, whilst markers of fibrosis were measured by Western blotting following the use of the glycolysis inhibitors 2-dg and 3PO and the glutaminolysis inhibitor G968. Succinate was also measured after TGF-β1 stimulation. Itaconate was added to SSc fibroblasts and collagen examined. TGF-β1 up-regulates glycolysis in dermal fibroblasts, and inhibition of glycolysis attenuates its pro-fibrotic effects. Furthermore, inhibition of glutamine metabolism also reverses TGF-β1-induced fibrosis, whilst glutaminase expression is up-regulated in dermal fibroblasts derived from SSc patient skin lesions, suggesting that enhanced glutamine metabolism is another aspect of the pro-fibrotic metabolic phenotype in skin fibrosis. TGF-β1 was also able to enhance succinate production, with increased succinate shown to be associated with increased collagen expression. Incubation of SSc cells with itaconate, an important metabolite, reduced collagen expression. TGF-β1 activation of glycolysis is a key feature of the fibrotic phenotype induced by TGF-B1 in skin cells, whilst increased glutaminolysis is also evident in SSc fibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。