Arabidopsis-expressing lysine-null SUMO1 reveals a non-essential role for secondary SUMO modifications in plants

拟南芥表达赖氨酸缺失的 SUMO1 揭示了植物中次级 SUMO 修饰的非必需作用

阅读:4
作者:Thérèse C Rytz, Juanjuan Feng, Jessica A S Barros, Richard D Vierstra

Abstract

The reversible conjugation of small ubiquitin-like modifier (SUMO) to other proteins has pervasive roles in various aspects of plant development and stress defense through its selective attachment to numerous intracellular substrates. An intriguing aspect of SUMO is that it can be further modified by SUMOylation and ubiquitylation, which isopeptide-link either or both polypeptides to internal lysines within previously bound SUMOs. Although detectable by mass spectrometry, the functions of these secondary modifications remain obscure. Here, we generated transgenic Arabidopsis that replaced the two related and essential SUMO isoforms (SUMO1 and SUMO2) with a lysine-null SUMO1 variant (K0) immune to further SUMOylation/ubiquitylation at these residues. Remarkably, homozygous SUMO1(K0) sumo1 sumo2 plants developed normally, were not hypersensitive to heat stress, and have nearly unaltered SUMOylation profiles during heat shock. However, subtle changes in tolerance to salt, paraquat, and the DNA-damaging agents bleomycin and methane methylsulfonate were evident, as were increased sensitivities to ABA and the gibberellic acid biosynthesis inhibitor paclobutrazol, suggesting roles for these secondary modifications in stress defense, DNA repair, and hormone signaling. We also generated viable sumo1 sumo2 lines expressing a SUMO1(K0) variant specifically designed to help isolate SUMO conjugates and map SUMOylation sites, thus offering a new tool for investigating SUMO in planta.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。