Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor

使用抗体功能化的磁性氧化铁纳米粒子进行增强夹心免疫测定,用于光子晶体生物传感器上可溶性转铁蛋白受体的提取和检测

阅读:7
作者:Ross D Peterson, Weili Chen, Brian T Cunningham, Juan E Andrade

Abstract

Iron deficiency anemia (IDA) has detrimental effects on individuals and societies worldwide. A standard sandwich assay (SA) for the detection of soluble transferrin receptor (sTfR), a biomarker of IDA, on a photonic crystal (PC) biosensor was established, but it was susceptible to non-specific signals from complex matrixes. In this study, iron-oxide nanoparticles (fAb-IONs) were used as magnetic immuno-probes to bind sTfR and minimize non-specific signals, while enhancing detection on the PC biosensor. This inverse sandwich assay (IA) method completely bound sTfR with low variability (<4% RSD) in buffer and allowed for its accurate and precise detection in sera (Liquichek™ control sera) on the PC biosensor using two certified ELISAs as reference methods. A linear dose-response curve was elicited at the fAb-IONs concentration in which the theoretical binding ratio (sTfR:fAb-IONs) was calculated to be <1 on the IA. The LoDs for sTfR in the SA and IA were similar (P>0.05) at 14 and 21 μg/mL, respectively. The inherent imprecision of the IA and reference ELISAs was σ(δ)=0.45 µg/mL and the mean biases for Liquichek™ 1, 2 and 3 were 0.18, 0.19 and -0.04 µg/mL, respectively. Whereas the inherent imprecision of the SA and reference ELISAs was σ(δ)=0.52 µg/mL and the biases for Liquichek™ 1, 2 and 3 were 0.66, 0.14 and -0.67 µg/mL, respectively. Thus, unlike the SA, the IA method measures sTfR with the same bias as the reference ELISAs. Combined magnetic separation and detection of nutrition biomarkers on PC biosensors represents a facile method for their accurate and reliable quantification in complex matrixes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。