Plasticity of Drug-Naïve and Vemurafenib- or Trametinib-Resistant Melanoma Cells in Execution of Differentiation/Pigmentation Program

未接受药物治疗的黑色素瘤细胞以及对维莫非尼或曲美替尼有抗性的黑色素瘤细胞在执行分化/色素沉着程序时的可塑性

阅读:4
作者:Malgorzata Czyz, Malgorzata Sztiller-Sikorska, Anna Gajos-Michniewicz, Marta Osrodek, Mariusz L Hartman

Abstract

Melanoma plasticity creates a plethora of opportunities for cancer cells to escape treatment. Thus, therapies must target all cancer cell subpopulations bearing the potential to contribute to disease. The role of the differentiation/pigmentation program in intrinsic and acquired drug resistance is largely uncharacterized. MITF level and expression of MITF-dependent pigmentation-related genes, MLANA, PMEL, TYR, and DCT, in drug-naïve and vemurafenib- or trametinib-treated patient-derived melanoma cell lines and their drug-resistant counterparts were analysed and referred to genomic alterations. Variability in execution of pigmentation/differentiation program was detected in patient-derived melanoma cell lines. Acute treatment with vemurafenib or trametinib enhanced expression of pigmentation-related genes in MITF-Mhigh melanoma cells, partially as the consequence of transcriptional reprograming. During development of resistance, changes in pigmentation program were not unidirectional, but also not universal as expression of different pigmentation-related genes was diversely affected. In selected resistant cell lines, differentiation/pigmentation was promoted and might be considered as one of drug-tolerant phenotypes. In other resistant lines, dedifferentiation was induced. Upon drug withdrawal ("drug holiday"), the dedifferentiation process in resistant cells either was enhanced but reversed by drug reexposure suggesting involvement of epigenetic mechanisms or was irreversible. The irreversible dedifferentiation might be connected with homozygous loss-of-function mutation in MC1R, as MC1RR151C +/+ variant was found exclusively in drug-naïve MITF-Mlow dedifferentiated cells and drug-resistant cells derived from MITFhigh/MC1RWT cells undergoing irreversible dedifferentiation. MC1RR151C +/+ variant might be further investigated as a parameter potentially impacting melanoma patient stratification and aiding in treatment decision.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。