Ground State Conditions Induce Rapid Reorganization of Core Pluripotency Factor Binding before Global Epigenetic Reprogramming

基态条件在整体表观遗传重编程之前诱导核心多能性因子结合的快速重组

阅读:5
作者:Christina Galonska, Michael J Ziller, Rahul Karnik, Alexander Meissner

Abstract

Mouse embryonic stem cells (mESCs) cultured under serum/LIF conditions exhibit heterogeneous expression of pluripotency-associated factors that can be overcome by two inhibitors (2i) of the MEK and GSK3 pathways. Several studies have shown that the "ground state" induced by 2i is characterized by global hypomethylation and specific transcriptional profiles, but little is known about the contributing effectors. Here we show that 2i conditions rapidly alter the global binding landscape of OCT4, SOX2, and NANOG. The dynamic binding influences enhancer activity and shows enrichment for regulators linked to Wnt and Erk signaling. Epigenomic characterization provided limited insights to the immediate transcriptional dynamics, suggesting that these are likely more secondary effects. Likewise, loss of the PRC2 component EED to prevent H3K27me3 deposition had minimal effect on the transcriptome, implying that it is largely dispensable for continued repression of bivalent genes and de novo silencing in 2i.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。