Toxicological Evaluation of a Probiotic-Based Delivery System for P8 Protein as an Anti-Colorectal Cancer Drug

基于益生菌的 P8 蛋白递送系统作为抗结直肠癌药物的毒理学评价

阅读:6
作者:Byung Chull An, Yeo-Sang Yoon, Ho Jin Park, Sangkyun Park, Tai Yeub Kim, Jun Young Ahn, Daebeom Kwon, Oksik Choi, Jin Young Heo, Yongku Ryu, Joong-Hyun Kim, Heejong Eom, Myung Jun Chung

Conclusion

These non-clinical toxicology studies could be used to furnish valuable data for the safety certification of PP-P8.

Methods

Based on gene therapy guidelines of the Ministry of Food and Drug Safety (MFDS) of Korea, the potential undesirable effects of PP-P8 had to be investigated in intact small rodent or marmoset models prior to first-in-human (FIH) administration. The estimated doses of PP-P8 for FIH are 1.0×1010 - 1.0×1011 CFU/person (60 kg). Therefore, to perform toxicological investigations in non-clinical animal models, we orally administered PP-P8 at doses of 3.375 × 1011, 6.75 × 1011, and 13.5×1011 CFU/kg/day; thus the maximum dose was 800-8000-fold higher than the estimated dose for FIH.

Purpose

This study aimed to toxicological evaluate a probiotics-based delivery system for p8 protein as an anti-colorectal cancer drug. Introduction: Lactic acid bacteria (LAB) have been widely ingested for many years and are regarded as very safe. Recently, a Pediococcus pentosaceus SL4 (PP) strain that secretes the probiotic-derived anti-cancer protein P8 (PP-P8) has been developed as an anti-colorectal cancer (CRC) biologic by Cell Biotech. We initially identified a Lactobacillus rhamnosus (LR)-derived anti-cancer protein, P8, that suppresses CRC growth. We also showed that P8 penetrates specifically into CRC cells (DLD-1 cells) through endocytosis. We then confirmed the efficacy of PP-P8, showing that oral administration of this agent significantly decreased tumor mass (~42%) relative to controls in a mouse CRC xenograft model. In terms of molecular mechanism, PP-P8 induces cell-cycle arrest in G2 phase through down-regulation of Cyclin B1 and Cdk1. In this study, we performed in vivo toxicology profiling to obtain evidence that PP-P8 is safe, with the goal of receiving approval for an investigational new drug application (IND).

Results

In our animal models, we observed no adverse effects of PP-P8 on clinicopathologic findings, relative organ weight, or tissue pathology. In addition, we observed no inflammation or ulceration during pathological necropsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。