Exosomes secreted by endothelial progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells exposed to hyperoxia in vitro

内皮祖细胞分泌的外泌体改善体外暴露于高氧的肺微血管内皮细胞的生物活性

阅读:9
作者:Xiaomei Zhang, Aizhen Lu, Zhi Li, Jiali Sun, Dan Dai, Liling Qian

Background

Paracrine factors secreted by endothelial progenitor cells (EPCs) are suggested to be responsible, in part, for the improved microvascular development in bronchopulmonary dysplasia (BPD) models. This study aims to investigate the potential role of exosomes derived from EPCs (EPC-EXOs), a component of paracrine secretion, in angiogenesis by mediating the activity of PMVECs exposed to hyperoxia.

Conclusions

Our data demonstrate EPCs secrete exosomes that have independent angiogenic activity in vitro. This may help explain in part the protective effects of EPCs on hyperoxic injury in the developing lung vasculature and may represent a promising therapeutic strategy for BPD.

Methods

EPCs were isolated from bone marrow of rats. EPC-EXOs were isolated by ExoQuick-TC kits from the conditioned media of EPCs. The PMVECs were divided into three groups, including the normal group, the hyperoxia group (exposed to 85% O2) and the EPC-EXOs treatment group (exposed to 85% O2 and EPC-EXOs with the concentration of 100 µg/mL). The activities of proliferation, migration and tube formation of PMVECs were detected at the endpoint. The mRNA and protein expression levels of VEGF, VEGFR2 and eNOS in different groups were detected by real-time quantitative PCR and western blot.

Results

We found EPC-EXOs exhibited a cup or biconcave morphology, with the size ranging from 30 to 150 nm, and positive for the characteristic exosomal surface marker proteins, CD63 and TSG101. Comparing to the control group, Hyperoxic stress impaired the proliferation, migration, and tubule formation of PMVECs, and decreased the expression of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), and vascular endothelial growth factor receptor 2 (VEGFR-2) of PMVECs. Comparing to the hyperoxia group, EPC-EXOs treatment enhanced the bioactivity of PMVECs in vitro, and increased the expression of eNOS, VEGF and VEGFR2. Conclusions: Our data demonstrate EPCs secrete exosomes that have independent angiogenic activity in vitro. This may help explain in part the protective effects of EPCs on hyperoxic injury in the developing lung vasculature and may represent a promising therapeutic strategy for BPD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。