GABAergic signalling in a neurogenic niche of the turtle spinal cord

龟脊髓神经源性微环境中的 GABA 能信号传导

阅读:4
作者:Cecilia Reali, Anabel Fernández, Milka Radmilovich, Omar Trujillo-Cenóz, Raúl E Russo

Abstract

The region that surrounds the central canal (CC) in the turtle spinal cord is a neurogenic niche immersed within already functional circuits, where radial glia expressing brain lipid binding protein (BLBP) behave as progenitors. The behaviour of both progenitors and neuroblasts within adult neurogenic niches must be regulated to maintain the functional stability of the host circuit. In the brain, GABA plays a major role in this kind of regulation but little is known about GABAergic signalling in neurogenic niches of the postnatal spinal cord. Here we explored the action of GABA around the CC of the turtle spinal cord by combining patch-clamp recordings of CC-contacting cells, immunohistochemistry for key components of GABAergic signalling and Ca(2+) imaging. Two potential sources of GABA appeared around the CC: GABAergic terminals and CC-contacting neurones. GABA depolarized BLBP(+) progenitors via GABA transporter-3 (GAT3) and/or GABA(A) receptors. In CC-contacting neurones, GABA(A) receptor activation generated responses ranging from excitation to inhibition. This functional heterogeneity appeared to originate from different ratios of activity of the Na(+)-K(+)-2Cl(-) co-transporter (NKCC1) and the K(+)-Cl(-) co-transporter (KCC2). In both progenitors and immature neurones, GABA induced an increase in intracellular Ca(2+) that required extracellular Ca(2+) and was blocked by the selective GABA(A) receptor antagonist gabazine. Our study shows that GABAergic signalling around the CC shares fundamental properties with those in the embryo and adult neurogenic niches, suggesting that GABA may be part of the mechanisms regulating the production and integration of neurones within operational spinal circuits in the turtle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。