Two-pore domain K⁺ channels regulate membrane potential of isolated human articular chondrocytes

双孔结构域 K⁺ 通道调节分离的人关节软骨细胞的膜电位

阅读:5
作者:Robert B Clark, Colleen Kondo, Darrell D Belke, Wayne R Giles

Abstract

Potassium channels that regulate resting membrane potential (RMP) of human articular chondrocytes (HACs) of the tibial joint maintained in short-term (0-3 days) non-confluent cell culture were studied using patch-clamp techniques. Quantitative PCR showed that transcripts of genes for two-pore domain K(+) channels (KCNK1, KCNK5 and KCNK6), and 'BK' Ca(2+)-activated K(+) channels (KCNMA1) were abundantly expressed. Immunocytological methods detected α-subunits for BK and K(2p)5.1 (TASK-2) K(+) channels. Electrophysiological recordings identified three distinct K(+) currents in isolated HACs: (i) a voltage- and time-dependent 'delayed rectifier', blocked by 100 nM α-dendrotoxin, (ii) a large 'noisy' voltage-dependent current that was blocked by low concentrations of tetraethylammonium (TEA; 50% blocking dose = 0.15 mM) and iberiotoxin (52% block, 100 nM) and (iii) a voltage-independent 'background' K(+) current that was blocked by acidic pH (5.5-6), was increased by alkaline pH (8.5), and was not blocked by TEA, but was blocked by the local anaesthetic bupivacaine (0.25 mM). The RMP of isolated HACs was very slightly affected by 5 mM TEA, which was sufficient to block both voltage-dependent K(+) currents, suggesting that these currents probably contributed little to maintaining RMP under 'resting' conditions (i.e. low internal [Ca(2+)]). Increases in external K(+) concentration depolarized HACs by 30 mV in response to a 10-fold increase in [K(+)], indicating a significant but not exclusive role for K(+) current in determining RMP. Increases in external [K(+)] in voltage-clamped HACs revealed a voltage-independent K(+) current whose inward current magnitude increased with external [K(+)]. Block of this current by bupivacaine (0.25-1 mM) in 5 and 25 mM external [K(+)] resulted in a large (8-25 mV) depolarization of RMP. The biophysical and pharmacological properties of the background K(+) current, together with expression of mRNA and α-subunit protein for TASK-2, strongly suggest that these two-pore domain K(+) channels contribute significantly to stabilizing the RMP of HACs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。