Psoriasis is characterized by deficient negative immune regulation compared to transient delayed-type hypersensitivity reactions

与短暂性迟发型超敏反应相比,银屑病的特点是缺乏负向免疫调节

阅读:6
作者:Nicholas Gulati, Mayte Suárez-Fariñas, Joel Correa da Rosa, James G Krueger

Abstract

Diphencyprone (DPCP) is a hapten that causes delayed-type hypersensitivity (DTH) reactions in human skin, and is used as a topical therapeutic for alopecia areata, warts, and cutaneous melanoma metastases. We examined peak DTH reactions induced by DPCP (3 days post-challenge) by comprehensive gene expression and histological analysis. To better understand how these DTH reactions naturally resolve, we compared our DPCP biopsies to those from patients with psoriasis vulgaris, a chronic inflammatory disease that does not resolve. By both microarray and qRT-PCR, we found that psoriasis lesional skin has significantly lower expression of many negative immune regulators compared to peak DPCP reactions. These regulators include: interleukin-10, cytotoxic T lymphocyte-associated 4 (CTLA4), programmed cell death 1 (PD1), programmed cell death 1 ligand 1 (PDL1), programmed cell death 1 ligand 2 (PDL2), and indoleamine 2,3-dioxygenase (IDO1). Their decreased expression was confirmed at the protein level by immunohistochemistry. To more completely determine the balance of positive vs. negative immune regulators in both DPCP reactions and psoriasis, we developed one comprehensive gene list for positive regulatory (inflammatory) genes, and another for negative regulatory (immunosuppressive) genes, through Gene Ontology terms and literature review. With this approach, we found that DPCP reactions have a higher ratio of negative to positive regulatory genes (both in terms of quantity and expression levels) than psoriasis lesional skin. These data suggest that the disease chronicity that distinguishes psoriasis from transient DTH reactions may be related to absence of negative immune regulatory pathways, and induction of these is therefore of therapeutic interest. Further study of these negative regulatory mechanisms that are present in DPCP reactions, but not in psoriasis, could reveal novel players in the pathogenesis of chronic inflammation. The DPCP system used here thus provides a tractable model for primary discovery of pathways potentially involved in immune regulation in peripheral tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。