G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo

G-四链体结合小分子可在体内和体外改善 C9orf72 FTD/ALS 病理

阅读:7
作者:Roberto Simone, Rubika Balendra, Thomas G Moens, Elisavet Preza, Katherine M Wilson, Amanda Heslegrave, Nathan S Woodling, Teresa Niccoli, Javier Gilbert-Jaramillo, Samir Abdelkarim, Emma L Clayton, Mica Clarke, Marie-Therese Konrad, Andrew J Nicoll, Jamie S Mitchell, Andrea Calvo, Adriano Chio, Hen

Abstract

Intronic GGGGCC repeat expansions in C9orf72 are the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are characterised by degeneration of cortical and motor neurons, respectively. Repeat expansions have been proposed to cause disease by both the repeat RNA forming foci that sequester RNA-binding proteins and through toxic dipeptide repeat proteins generated by repeat-associated non-ATG translation. GGGGCC repeat RNA folds into a G-quadruplex secondary structure, and we investigated whether targeting this structure is a potential therapeutic strategy. We performed a screen that identified three structurally related small molecules that specifically stabilise GGGGCC repeat G-quadruplex RNA We investigated their effect in C9orf72 patient iPSC-derived motor and cortical neurons and show that they significantly reduce RNA foci burden and the levels of dipeptide repeat proteins. Furthermore, they also reduce dipeptide repeat proteins and improve survival in vivo, in GGGGCC repeat-expressing Drosophila Therefore, small molecules that target GGGGCC repeat G-quadruplexes can ameliorate the two key pathologies associated with C9orf72 FTD/ALS These data provide proof of principle that targeting GGGGCC repeat G-quadruplexes has therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。