Fluorescence Correlation Spectroscopy Reveals Interaction of Some Microdomain-Associated Lipids with Cellular Focal Adhesion Sites

荧光相关光谱揭示某些微区相关脂质与细胞黏着斑的相互作用

阅读:12
作者:Christian Kleusch, Cornelia Monzel, Krishna Chander Sridhar, Bernd Hoffmann, Agnes Csiszár, Rudolf Merkel

Abstract

Cells adhere to the extracellular matrix at distinct anchoring points, mostly focal adhesions. These are rich in immobile transmembrane- and cytoskeletal-associated proteins, some of which are known to interact with lipids of the plasma membrane. To investigate their effect on lipid mobility and molecular interactions, fluorescently labeled lipids were incorporated into the plasma membranes of primary myofibroblasts using fusogenic liposomes. With fluorescence correlation spectroscopy, we tested mobilities of labeled microdomain-associated lipids such as sphingomyelin (SM), ganglioside (GM1), and cholesterol as well as of a microdomain-excluded phospholipid (PC) and a lipid-like molecule (DiIC18(7)) in focal adhesions (FAs) and in neighboring non-adherent membrane areas. We found significantly slower diffusion of SM and GM1 inside FAs but no effect on cholesterol, PC, and DiIC18(7). These data were compared to the molecular behavior in Lo/Ld-phase separated giant unilamellar vesicles, which served as a model system for microdomain containing lipid membranes. In contrast to the model system, lipid mobility changes in FAs were molecularly selective, and no particle enrichment occurred. Our findings suggest that lipid behavior in FAs cannot be described by Lo/Ld-phase separation. The observed slow-down of some molecules in FAs is potentially due to transient binding between lipids and some molecular constituent(s).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。