Complex I specific increase in superoxide formation and respiration rate by PrP-null mouse brain mitochondria

PrP 基因敲除的小鼠脑线粒体中复合物 I 特异性增加超氧化物的形成和呼吸速率

阅读:4
作者:Andrew W J Paterson, John C Curtis, Nikki K Macleod

Abstract

An imbalance in free radical production and removal is considered by many to be an important factor in the etiology of many degenerative diseases. Since mitochondria are a major source of free radicals, we have examined mitochondrial free radical production in relation to oxidative phosphorylation in PrP-null mice. Quantitative electron paramagnetic resonance spectroscopy revealed up to a 70% increase in superoxide production from Complex I of submitochondrial particles prepared from PrP-null mice. This was accompanied by elevated respiratory capacity through Complex I without any discernible alteration in respiratory efficiency. These differences are associated with changes in superoxide dismutase levels and defects in mitochondrial morphology, confirming previously reported results. Our results demonstrate a clear difference in free radical production and oxygen consumption by mitochondrial Complex I between PrP-null mice and wild-type controls, pointing to Complex I as a potential target for pathological change, suggesting similarities between prion-related and other neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。