Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury

肺泡巨噬细胞的耐受性信号诱导肺对氧化损伤的适应

阅读:4
作者:Benoit Allard, Alice Panariti, Erwan Pernet, Jeffrey Downey, Satoshi Ano, Marieme Dembele, Emily Nakada, Utako Fujii, Toby K McGovern, William S Powell, Maziar Divangahi, James G Martin

Background

Inhaled oxidative toxicants present in ambient air cause airway epithelial injury, inflammation, and airway hyperresponsiveness. Effective adaptation to such environmental insults is essential for the preservation of pulmonary function, whereas failure or incomplete adaptation to oxidative injury can render the host susceptible to the development of airway disease.

Conclusion

Pulmonary adaptation during oxidative stress-induced lung injury is mediated by a novel subset of forkhead box P3-positive AMs that limits inflammation, favoring airway adaptation and host fitness through TGF-β and prostaglandin E2.

Methods

For a model to study pulmonary adaptation to oxidative stress-induced lung injury, we exposed mice to repeated nose-only chlorine gas exposures. Outcome measures were evaluated 24 hours after the last chlorine exposure. Lung mechanics and airway responsiveness to methacholine were assessed by using the flexiVent. Inflammation and antioxidant responses were assessed in both bronchoalveolar lavage fluid and lung tissue. Using both loss or gain of function and genomic approaches, we further dissected the cellular and molecular mechanisms involved in pulmonary adaptation.

Objective

We sought to explore the mechanisms of airway adaptation to oxidative injury.

Results

Repeated exposures to oxidative stress resulted in pulmonary adaptation evidenced by abrogation of neutrophilic inflammation and airway hyperresponsiveness. This adaptation was independent of antioxidant mechanisms and regulatory T cells but dependent on residential alveolar macrophages (AMs). Interestingly, 5% of AMs expressed forkhead box P3, and depletion of these cells abolished adaptation. Results from transcriptomic profiling and loss and gain of function suggest that adaptation might be dependent on TGF-β and prostaglandin E2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。